
COP 4710: Database Systems (DDBMS) Page 1 Mark Llewellyn ©

COP 4710: Database Systems
Spring 2006

CHAPTER 22 – Parallel and Distributed
Database Systems – Part 2

COP 4710: Database Systems
Spring 2006

CHAPTER 22 – Parallel and Distributed
Database Systems – Part 2

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2006

COP 4710: Database Systems (DDBMS) Page 2 Mark Llewellyn ©

Options for Distributing A Database
• There are four basic strategies that can be employed for distributing a

database:

1. Data replication

– Full

– Partial

2. Horizontal fragmentation

3. Vertical fragmentation

4. Combinations of those above.

– Replicated horizontal fragments

– Replicated vertical fragments

– Horizontal/vertical fragments

Covered in previous section of notes

COP 4710: Database Systems (DDBMS) Page 3 Mark Llewellyn ©

Horizontal Fragmentation
• With horizontal fragmentation, some of the rows of a relation

(table) are put into a base relation at one site, and other rows
of the relation are put into a base relation at another site.

– Note: there is no overlapping of the rows across the various
sites – this is pure fragmentation, if there were overlapping
rows, we would also have replication, which falls into the last
category of distributed options. This would be a more general
approach, although it is also quite common.

• Horizontal fragmentation results from applying selection
conditions (relational algebra selections) to relations.

COP 4710: Database Systems (DDBMS) Page 4 Mark Llewellyn ©

Horizontal Fragmentation (cont.)

Oviedo

Oviedo

Longwood

Maitland

Oviedo

Branch

Tawni

Didi

Michael

Debbie

Kristi

Customer Name

Initial table R

Horizontal fragments based on:
δ(Branch = ‘Oviedo’)(R)

Fragment #1

Fragment #2

Oviedo

Oviedo

Oviedo

Branch

Tawni

Didi

Kristi

Customer Name

Longwood

Maitland

Branch

Michael

Debbie

Customer Name

COP 4710: Database Systems (DDBMS) Page 5 Mark Llewellyn ©

Horizontal Fragmentation (cont.)

• Horizontal fragmentation has four major advantages:

1. Efficiency – Data can be stored close to where they are used
and separate from other data used by other users or
applications.

2. Local optimization – Data can be stored to optimize
performance for local access rather than global access.

3. Security – Data not relevant to usage at a particular site is not
made available at that site.

4. Ease of querying – Combining data across horizontal fragments
is easy because the rows are simply merged by unions across
the fragments.

COP 4710: Database Systems (DDBMS) Page 6 Mark Llewellyn ©

Horizontal Fragmentation (cont.)

• Horizontal fragmentation has two primary disadvantages:

1. Inconsistent access speed – When data from several fragments
are required, the access time can be significantly different from
local-only data access.

2. Backup vulnerability – Since the data is not replicated, when
data at one site becomes inaccessible or damaged, usage cannot
switch to another site where a copy exists; data may be lost if
proper backup is not performed at each site.

• Horizontal fragmentation is typically used when an
organizational function is distributed, but each site is
concerned with only a subset of the entity instances
(often geographically based).

COP 4710: Database Systems (DDBMS) Page 7 Mark Llewellyn ©

Vertical Fragmentation

• With vertical fragmentation, some of the columns of
a relation (table) are put into a base relation at one
site, and other columns of the relation are put into a
base relation at another site.

– Note: there must be a common domain stored at
each site so that the original table can be
reconstructed.

• Vertical fragmentation results from applying
projection operations (relational algebra projection)
to relations.

COP 4710: Database Systems (DDBMS) Page 8 Mark Llewellyn ©

Vertical Fragmentation (cont.)

18,000

50,000

4,000

23,000

15,000

Balance

Oviedo

Oviedo

Longwood

Maitland

Oviedo

Branch

Tawni

Didi

Michael

Debbie

Kristi

Customer Name

Initial table R

Vertical fragment based on: π(name, branch)(R)

Oviedo

Oviedo

Longwood

Maitland

Oviedo

Branch

Tawni

Didi

Michael

Debbie

Kristi

Customer Name

Vertical fragment based on: π(name, balance)(R)

18,000

50,000

4,000

23,000

15,000

Balance

Tawni

Didi

Michael

Debbie

Kristi

Customer Name

COP 4710: Database Systems (DDBMS) Page 9 Mark Llewellyn ©

Combinations of Distribution Strategies
• To complicate matters even further, there are an almost

unlimited number of combinations of distribution strategies
based upon the previous cases.

• Some data may be stored centrally while others are
replicated. Both horizontal and vertical fragments can be
replicated.

COP 4710: Database Systems (DDBMS) Page 10 Mark Llewellyn ©

Horizontal/Vertical Fragmentation

18,000

50,000

4,000

23,000

15,000

Balance

Oviedo

Oviedo

Longwood

Maitland

Oviedo

Branch

Tawni

Didi

Michael

Debbie

Kristi

Customer Name

Initial table R

Fragment based on: δ(branch = ‘Oviedo’)(π(name, branch)(R))

Oviedo

Oviedo

Oviedo

Branch

Tawni

Didi

Kristi

Customer Name

Fragment based on: δ(branch <> ‘Oviedo’)(π(name, branch)(R))

Longwood

Maitland

Branch

Michael

Debbie

Customer Name

Fragment based on: δ(balance >15000)(R)

18,000

50,000

23,000

Balance

Oviedo

Oviedo

Maitland

Branch

Tawni

Didi

Debbie

Customer Name Fragment based on: δ(name = ‘Krisit’)(π(name, balance)(R))

15,000

Balance

Kristi

Customer Name

COP 4710: Database Systems (DDBMS) Page 11 Mark Llewellyn ©

Selecting a Distribution Strategy
• A distributed database can be organized in five unique ways:

1. Totally centralized – all data resides at one location accessed from
many geographically distributed sites.

2. Partially or totally replicated (snapshot) – data is either partially or
totally replicated across geographically distributed sites, with each
replica periodically updated with snapshots.

3. Partially or totally replicated (real-time synchronization) – data is
either partially or totally replicated across geographically distributed
sites, with near real-time synchronization.

4. Fragmented (integrated) – data is into segments at different
geographically distributed sites, but still within one logical database
and one distributed DBMS.

5. Fragmented (nonintegrated) – data is fragmented into independent,
non integrated segments spanning multiple computer systems and
database software.

COP 4710: Database Systems (DDBMS) Page 12 Mark Llewellyn ©

Selecting a Distribution Strategy
• A distributed database can be organized in five unique ways:

1. Totally centralized – all data resides at one location accessed from
many geographically distributed sites.

2. Partially or totally replicated (snapshot) – data is either partially or
totally replicated across geographically distributed sites, with each
replica periodically updated with snapshots.

3. Partially or totally replicated (real-time synchronization) – data is
either partially or totally replicated across geographically distributed
sites, with near real-time synchronization.

4. Fragmented (integrated) – data is into segments at different
geographically distributed sites, but still within one logical database
and one distributed DBMS.

5. Fragmented (nonintegrated) – data is fragmented into independent,
non integrated segments spanning multiple computer systems and
database software.

COP 4710: Database Systems (DDBMS) Page 13 Mark Llewellyn ©

Summary of Distributed Design Strategies

COP 4710: Database Systems (DDBMS) Page 14 Mark Llewellyn ©

Distributed DBMS
• To have a distributed database, there must be a database

management system that coordinates the access to the data at
the various sites.

• Such a system is called a distributed DBMS.

• Although each site may have a DBMS managing the local
database at that site, a distributed DBMS must perform the
following functions for the distributed database.

COP 4710: Database Systems (DDBMS) Page 15 Mark Llewellyn ©

Functions of a Distributed DBMS

• Locate data with a distributed data dictionary.
• Determine location from which to retrieve data and

process query components.
• DBMS translation between nodes with different local

DBMSs (using middleware).
• Data consistency (via multiphase commit protocols).
• Global primary key control.
• Provide scalability.
• Security, concurrency, query optimization, failure

recovery.

COP 4710: Database Systems (DDBMS) Page 16 Mark Llewellyn ©

Distributed DBMS Architecture

COP 4710: Database Systems (DDBMS) Page 17 Mark Llewellyn ©

Local vs. Global Transactions
• A local transaction is one for which the required data are stored

entirely at the local site.
– The distributed DBMS passes the request to the local DBMS.

• A global transaction references data at one or more non-local
sites.
– The distributed DBMS routes the request to other sites as necessary.

The distributed DBMSs at the participating sites exchange messages as
needed to coordinate the processing of the transaction until it is
completed (or aborted, if necessary).

COP 4710: Database Systems (DDBMS) Page 18 Mark Llewellyn ©

Steps to Process a Local Transaction

1. Application makes request to distributed DBMS

2. Distributed DBMS checks distributed data
repository for location of data. Finds that it is local.

3. Distributed DBMS sends request to local DBMS

4. Local DBMS processes request

5. Local DBMS sends results to application

COP 4710: Database Systems (DDBMS) Page 19 Mark Llewellyn ©

Local transaction – all
data stored locally

1

3

4

5

2

Processing a Local Transaction

COP 4710: Database Systems (DDBMS) Page 20 Mark Llewellyn ©

Steps to Process a Global Transaction
1. Application makes request to distributed DBMS

2. Distributed DBMS checks distributed data repository for location
of data. Finds that it is remote

3. Distributed DBMS routes request to remote site

4. Distributed DBMS at remote site translates request for its local
DBMS if necessary, and sends request to local DBMS

5. Local DBMS at remote site processes request

6. Local DBMS at remote site sends results to distributed DBMS at
remote site

7. Remote distributed DBMS sends results back to originating site

8. Distributed DBMS at originating site sends results to application

COP 4710: Database Systems (DDBMS) Page 21 Mark Llewellyn ©

Global transaction – some
data is at remote site(s)

1

2

4

5

6

3

7

8

Processing a Global Transaction

COP 4710: Database Systems (DDBMS) Page 22 Mark Llewellyn ©

Distributed DBMS Transparency Objectives
• Location Transparency

– User/application does not need to know where data resides

• Replication Transparency
– User/application does not need to know about duplication

• Failure Transparency
– Either all or none of the actions of a transaction are committed
– Each site has a transaction manager

• Logs transactions and before and after images
• Concurrency control scheme to ensure data integrity

– Requires special commit protocol

COP 4710: Database Systems (DDBMS) Page 23 Mark Llewellyn ©

Two-Phase Commit

• Prepare Phase
– Coordinator receives a commit request

– Coordinator instructs all resource managers to get
ready to “go either way” on the transaction. Each
resource manager writes all updates from that
transaction to its own physical log

– Coordinator receives replies from all resource
managers. If all are ok, it writes commit to its own
log; if not then it writes rollback to its log

COP 4710: Database Systems (DDBMS) Page 24 Mark Llewellyn ©

Two-Phase Commit (cont.)

• Commit Phase
– Coordinator then informs each resource manager of its

decision and broadcasts a message to either commit or
rollback (abort). If the message is commit, then each
resource manager transfers the update from its log to its
database

– A failure during the commit phase puts a transaction “in
limbo.” This has to be tested for and handled with timeouts
or polling

COP 4710: Database Systems (DDBMS) Page 25 Mark Llewellyn ©

Concurrency Control

Concurrency Transparency

– Design goal for distributed database

• Timestamping

– Concurrency control mechanism

– Alternative to locks in distributed databases

COP 4710: Database Systems (DDBMS) Page 26 Mark Llewellyn ©

Query Optimization
• In a query involving a multi-site join and, possibly, a distributed

database with replicated files, the distributed DBMS must decide
where to access the data and how to proceed with the join.
Three step process:

1 Query decomposition - rewritten and simplified

2 Data localization - query fragmented so that fragments
reference data at only one site

3 Global optimization -
• Order in which to execute query fragments

• Data movement between sites

• Where parts of the query will be executed

